3.109 \(\int (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=65 \[ \frac{a^2 \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{3 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(3*a^(3/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a^2*Tan[c + d*x])/(d*Sqrt[a + a*Cos[
c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.118048, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2762, 21, 2773, 206} \[ \frac{a^2 \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{3 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^2,x]

[Out]

(3*a^(3/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a^2*Tan[c + d*x])/(d*Sqrt[a + a*Cos[
c + d*x]])

Rule 2762

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c
+ a*d)), x] + Dist[b^2/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*
Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -1]
&& (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{3/2} \sec ^2(c+d x) \, dx &=\frac{a^2 \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-a \int \frac{\left (-\frac{3 a}{2}-\frac{3}{2} a \cos (c+d x)\right ) \sec (c+d x)}{\sqrt{a+a \cos (c+d x)}} \, dx\\ &=\frac{a^2 \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{1}{2} (3 a) \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{a^2 \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{\left (3 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{3 a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{a^2 \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.115174, size = 81, normalized size = 1.25 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right )+3 \sqrt{2} \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(3/2)*Sec[c + d*x]^2,x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(3*Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c
 + d*x] + 2*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 2.273, size = 381, normalized size = 5.9 \begin{align*}{\frac{1}{d}\sqrt{a}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -6\,a \left ( \ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) +\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+2\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+3\,\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+3\,\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a \right ) \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2} \right ) ^{-1} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2} \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(3/2)*sec(d*x+c)^2,x)

[Out]

a^(1/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-6*a*(ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2
)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2)
)*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^2+2*a
^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+3*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(
1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+3*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*c
os(1/2*d*x+1/2*c)-2^(1/2))/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [B]  time = 2.13424, size = 1774, normalized size = 27.29 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

-1/4*(2*sqrt(2)*a*cos(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 6*sqrt(2)*a*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) +
(2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 6*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si
n(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
+ 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2
)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*
d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + (2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 6
*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(
1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/
2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)
^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x
+ 1/2*c) + 2))*sin(2*d*x + 2*c)^2 - 4*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) - 2*(s
qrt(2)*a*sin(3/2*d*x + 3/2*c) - 5*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/
2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*
x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
 + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*si
n(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x
+ 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/
2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*
x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)
 - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*si
n(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x
+ 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 2*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(7/2*d*x + 7/2*
c) - 6*(sqrt(2)*a*cos(2*d*x + 2*c) + sqrt(2)*a)*sin(5/2*d*x + 5/2*c) + 2*(3*sqrt(2)*a*cos(3/2*d*x + 3/2*c) + s
qrt(2)*a*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c))*sqrt(a)/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d
*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.65082, size = 387, normalized size = 5.95 \begin{align*} \frac{3 \,{\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} a \sin \left (d x + c\right )}{4 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

1/4*(3*(a*cos(d*x + c)^2 + a*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d
*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(
d*x + c) + a)*a*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(3/2)*sec(d*x+c)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 4.20447, size = 339, normalized size = 5.22 \begin{align*} \frac{\sqrt{2} a^{\frac{7}{2}}{\left (\frac{3 \, \sqrt{2} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{a{\left | a \right |}} + \frac{8 \,{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )}}{{\left ({\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} a}\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(3/2)*sec(d*x+c)^2,x, algorithm="giac")

[Out]

1/4*sqrt(2)*a^(7/2)*(3*sqrt(2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2
 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqr
t(2)*abs(a) - 6*a))/(a*abs(a)) + 8*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 -
a)/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) -
 sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*a))/d